
Triangle Peak: An Educational Trigonometry Game
Maximilian Levine

Department of Computer Science
University of North Carolina at Asheville

Email: mlevine@unca.edu

Abstract—Triangle Peak is an educational game that turns
learning trigonometry into a fun puzzle platformer. It is inspired
by practical applications of trigonometry, and transforms what
would be dry textbook problems into something that feels real.
Gamification is a practice that often involves attaching RPG-
inspired leveling systems onto otherwise unrelated items. But
Triangle Peak uses a different and genuine educational approach,
with its mechanics directly mirroring the aspect of reality it
corresponds to, and through uses of trigonometry in the real
world, places the player into practical usage of the concepts.
The completed product of Triangle Peak has great potential to
be used in education, and to allow people of all ages to get a
better grasp on trigonometry concepts in a fun way.

I. INTRODUCTION

Fig. 1: Climb the mountain.

Triangle Peak was created when it was noticed how game-
like certain problems look in textbooks (Figure 2), and a
system was developed that would allow these and other similar
problems to be played in the form of a video game.

Fig. 2: Game-like textbook problem.

The player must traverse a world and find or calculate the
measurements of varying things—width of a chasm, height
of an air balloon, depth of a well, etc.—to progress, using

their mathematical toolset to find the answers just out of
reach. It melds platforming with trigonometry problems by
turning walls and the limitations of gravity into the unknown
lengths/angles found in regular trigonometry problems. The
player uses a drafting book that lets them draw and connect
lines on the screen, and a measuring tape and protractor that
respectively lets them measure the lengths and angles of these
lines—provided their player character can physically reach
them. The player also collects various trigonometry equations:
the “SOH CAH TOA” equations, the Pythagorean theorem,
the sum of angles rule, similar triangles, law of sines/cosines,
and so on (Figure 3). They can plug in their measurements to
these equations and receive outputs for the unknowns in the
problems.

Fig. 3: Some trig equations.

So here are the core systems: the player character can move
by walking and jumping. The user can draw and connect lines
on the screen, which snap to each other, forming triangular
shapes. When the player character touches two sides of a
line, or angle between lines, the length or angle (respectively)
appears as a draggable block. A sheet of equations can be
accessed any time, and contains trigonometric equations. The
previously outputted values can be dragged and plugged into
the equation (similar to how equation blocks work in Scratch);
when only one unknown remains, its value is outputted.

The resulting system produces a game that emulates many
trigonometry problems in the real world, and by placing
the player into these scenarios, the player is sure to learn
and understand trigonometry concepts on a deeper and more
intuitive level. There is also the opportunity for an additional

research study: seeing how effective the game is at teaching
trig, compared with traditional textbook methods.

II. BACKGROUND

A. Similar software

I first wanted to look into Geometer’s Sketchpad (GSP),
which is an educational program used to do geometry and
trigonometry. It was useful to look at since I would be
implementing a subset of its features with the line/angle
drawing/measuring systems.

Another program to compare is Scratch, a programming
system for kids developed by MIT. In Scratch, equations and
variables are like Lego blocks that can be snapped together
(Figure 4). This is similar to how equations will work in
Triangle Peak. Again, it will be useful to see how these are
implemented.

Fig. 4: Expression blocks in Scratch

Foldit is a game about folding proteins that benefits real
science (Figure 5). This game melds game with science and
education: every aspect of its mechanics parallel what it is
teaching about.

Fig. 5: Foldit protein folding game

World of Goo (Figure 6) is a physics platformer game about
building structures out of triangles, so it has some things in
common with this project. Something might be able to be
gleaned from the freedom with which players are able to
explore the world through triangles.

Fig. 6: Goo tower in World of Goo

B. Literature review
Almeqdadi examined Geometer’s Sketchpad, the educa-

tional program used to do trigonometry. In this study, one
group of students used GSP, while a control group simply
used the traditional textbook. Pre-tests and post-tests were
performed, and the result was that, compared with the control
group, GSP significantly improved the students’ performance.
(Almeqdadi)

In another study on GSP, Nordin did an extensive study
taking place in 34 mathematics secondary schools. A digital
module was developed using Macromedia Authorware to be
used in conjunction with Geometer’s Sketchpad, allowing for
a more focused use of the software. The results show that the
methods met educational requirements, and the authors suggest
looking further into using GSP in mathematics teaching.
(Nordin)

In an article on educational games, Valerie claims that
perhaps even a game not as explicitly educational as the GSP
modules can promote learning. World of Goo is a physics
platformer game about building structures out of triangles, so
it has some things in common with Triangle Peak. Something
might be able to be gleaned from the freedom with which
players are able to explore the world through triangles. And
the section of this book, “Does Playing World of Goo Facilitate
Learning?” discusses and makes the claim that World of Goo
itself is already educational, despite not being explicitly so. As
Henry Ford says, “Failure is the opportunity to begin again,
more intelligently.” (Valerie)

In an article titled, “Math Games: An Alternative (Ap-
proach) to Teaching Math,” Eliens goes on to discuss using
new media strategies and games to promote learning. This
article is all about using new media to teach math, which they
believe will get students over the common, initial hurdle of
fearing math. New media allows “constructive explorations
in a wide variety of mathematical problems.” The article
discusses games as instruments to drill concepts, but also as
ways to think big-picture and identify strategies for problems,
something that World of Goo is a great example of, and that
Triangle Peak is built around.

Jean Justice looked into barriers for using games and
simulations for education, and surveys a broad overview of the
topic of simulation games (which Triangle Peak is), as well as
the barriers that educators perceive from adopting simulation
games, such as an aversion to the word games, and ways to
avoid those barriers. (Jean Justice)

In an accessible paper, Liu discusses simulation games,
which have a high potential for users to enter a “flow” state.
The paper tries to answer the question of how simulation
games improve problem solving by running an experiment
on 117 students in a simulation game designed to target
computational problem solving. (Liu)

Cruickshank in the academic paper “Classroom Games and
Simulations” covers the effects of games and simulations being
used educationally. Of interest is its distinction between games
and simulations, the main difference being that games have a
specific goal. This is similar to comparing GSP with Triangle

Peak, since the latter will essentially be a more focused version
of the former, and with a goal. (Cruickshank)

In “Trigonometry: Comparing Ratio and Unit Circle Meth-
ods,” Kendal discusses the teaching of trigonometry, and
compares two common approaches of doing so: the old way,
and the new way along with the advent of “new mathematics.”
This is useful to see the comparison, and the most effective,
proven ways of learning trigonometry. (Kendal)

“Trigonometry” by Gelfand is a popular book all about
trigonometry, seemingly the standard on the subject. This is
useful to learn/relearn some trigonometry concepts, such as
trigonometry identities, that could be used in the game. It starts
from the basics and works its way up. (Gelfand)

Buchberger in “Computer Algebra” surveys and explains
methods of computer algebra systems, i.e. equation solvers,
which could be needed in Triangle Peak. These systems are
highly complex. For this reason, it seems like it will be best
to either use an existing library or to hard-code code each
equation in the game manually. The benefit of the former,
though, would be flexibility and the potential for users to enter
their own equations. Ultimately, we went with the hard-coded
approach. (Buchberger)

“The Best Game Engines for Making Your Own 2D Indie
Game” by Famularo was useful in determining which engine
to use for Triangle Peak; ultimately we went with Unity. This
article compares different game engines, specifically for 2d
projects. (Famularo)

In article “The Guide to Implementing 2D Platformers” on
HigherOrder Fun, Monteiro goes into an in-depth tutorial on
how to build 2D platformers. It is fairly comprehensive and
also discusses slopes, stairs, and ladders, which are included
in Triangle Peak. This is a valuable resource for building the
platforming aspect of the game. (Monteiro)

III. PROJECT DESCRIPTION

This game required the programming and implementation
of some complex systems, the use of a game engine and
related software, as well as the challenge of deploying and
publishing a game—all of the problems that creating an
original, commercial game entails.

Fig. 7: Protractor and measuring tape.

A. Requirements/Specifications

One challenge in developing Triangle Peak are the complex
and nontrivial software systems that must be built. These
systems are custom and specific, such that I can’t simply
follow a tutorial to implement them, but must engineer new
solutions myself.

1) Line snapping: The most challenging of these features is
the line drawing mechanic. The user must be able to draw and
connect lines. Points should be able to connect to other points,
lines, or intersections. Additionally, points should ”snap” so
that the user can form precise constructions without having to
”eye-ball” it. These snapping areas are defined and allow for
snapping to form specific lengths and angles. Whenever a user
drags a point, it should snap to these snapping lines/points if
near enough.

Fig. 8: Angle snapping.

2) Math problems: When the player character activates a
line or node, the correct lengths and angles must be calculated
and appear in the correct places. There were also many
other cases where challenging, yet specific and modular, math
calculations needed to be coded, and these required referring
to researching external math formulas and algorithms.

3) Book of equations: Another issue entirely is the book
of equations. The user can drag values into the various trig
equations, and the equations must then output the correct value
once there is only one unknown value.

Fig. 9: Book of equations.

4) Platforming: Standard 2d platforming will also be
needed, with slopes and ladders.

5) Aesthetics: A paper aesthetic guides the art direction, as
if the game takes place entirely in someone’s notebook.

B. Design

1) Line snapping: The line drawing system took most of
the development time. It was made more challenging due
to round-off error, making it impossible to rely on specific
coordinates as being accurate. In order to make this system, the
use of a graph data structure - with nodes and edges connecting
them - was utilized. The storage utilized was a list of node
objects with integer ids, each of which had a list of all their
adjacent nodes. Each of these node objects also had a reference
to its corresponding game object, which has coordinates and
appears on the screen. A separate list of edge line objects
(which connect any two nodes) is also maintained, such that
for any operation, only one edge line object between any two
points exists at a time.

Originally, in the minimum viable product (MVP) proto-
type, users would draw a single line segment, and on releasing
the mouse, this line segment was incorporated into the main
graph structure, appropriately connecting the new segment to
any nearby nodes. However, in order for all of the snapping
features to work, it was necessary to change this (so that
duplicate code for segments and the main structure wouldn’t
have to be made). So, when the user draws a line, now both
nodes are immediately placed into the structure, while the
player’s mouse is dragging the other end of the line. All
consolidated into one structure, the advanced snapping features
were made simpler.

Fig. 10: Line construction

The design for the snapping system is theoretically simple
(although it took 2,000 lines of code). While a node is
dragged, look for something to snap to. If there is, receive
the coordinates to snap to as well as a unique snapping string.
At this point, a backup of nodes, edges, and their activations
are recorded, for undoing later on. After this backup is made,
alterations to the graph structure appropriate for the snap
type are made. There are four types of snap: real node snap,

how snapping affects graph how it is calculated unique/extra info stored

real node
both nodes (current moving and this one)
are combined, i.e. their edges are added together in graph nodes

imaginary point

for any edges found to intersect this point,
disconnect the nodes on either side, then
reconnect those nodes to the current moving
point

any intersections between
lines and/or imaginary lines

all edges found to intersect
at a given point are stored
in a dictionary

line
the nodes on either side of the edge are
disconnected, and each are reconnected to
the current moving node

in graph edges
a virtual line is stored that
the node must snap to

imaginary line no effect on graph

these consist of lines forming
angles, lines forming a 0 degree
angle (self snap), as well as
circles (for distance snap)

imaginary point snap, line snap, imaginary line snap. And for
each of these, respectively, there are several ways in which
the graph structure is modified: both nodes are merged (their
outgoing edges are combined into one node), any edges that
have been found to intersect the imaginary point have their
points disconnected and then reconnected to the current node,
the points joining the edge are disconnected and reconnected to
the current node, and lastly no changes are made for imaginary
lines. Each of the imaginary types must be calculated prior to
this, and are formed from intersections, complement angles,
and circles formed for getting specific lengths. Once success-
fully snapped, the moving node continues to query to see if it
should still be snapping. Thus it continually receives the snap
id string as well as updated coordinates (the line snapping
states can be the same snap id but with new coordinates). If
the snap id is different (the player has moused away from
where they were previously holding the node), then the node
must unsnap, reversing changes made to the graph structure by
referring to the backup. This effectively allows one to drag a
node anywhere and for it to move freely while still snapping
to potential nearby points. Once the mouse is released, the
node is permanently in its place in the graph, and the backup
data is discarded. Refer to the very general pseudocode for
how all of this comes together.

NodeObject :

members :
s t r i n g s n a p I d
bool i s S n a p p i n g
Vec to r2 p o s i t i o n
Vec to r2 s n a p p i n g P o i n t

whi le b e i n g mouse d ragged :

i f not i s S n a p p i n g :

(i s S n a p p i n g , snapId , s n a p p i n g P o i n t) <− Snap .
snap (p o s i t i o n)

i f i s S n a p p i n g :

p o s i t i o n = s n a p p i n g P o i n t ;

(newIsSnapping , newSnapId , newSnapp ingPo in t)
<− Snap . snap (m o u s e P o s i t i o n)

i f s n a p p i n g P o i n t != newSnapp ingPo in t :

(i s S n a p p i n g , snapId , s n a p p i n g P o i n t) <− NULL

Snap :

snap (p o s i t i o n) :
c a l c u l a t e I m a g i n a r i e s ()
(i s S n a p p i n g , snapId , s n a p p i n g P o i n t) <−

g e t N e a r e s t (p o s i t i o n)
backupGraph ()
i n c o r p o r a t e C h a n g e s (s n a p I d)
re turn (i s S n a p p i n g , snapId , s n a p p i n g P o i n t)

members :
l i s t of i m a g i n a r y l i n e s and c i r c l e s
d i c t i o n a r y where i m a g i n a r y p o i n t −−> l i s t of

i n t e r s e c t i n g edges

c a l c u l a t e I m a g i n a r i e s :
c r e a t eCo mplem en tAng leL in es () / / i m a g i n a r y
c r e a t e L e n g t h C i r c l e s () / / i m a g i n a r y
f o r e a c h l i n e s (and c i r c l e s) :

f o r e a c h l i n e s (and c i r c l e s) :
i f i n t e r s e c t i o n :

s ave i m a g i n a r y p o i n t
a l s o add t h e i n t e r s e c t i n g l i n e s t o

d i c t i o n a r y wi th p o i n t a s key
(u n l e s s imag ina ry , t h e n don ’ t add)

g e t N e a r e s t (p o s i t i o n) :
s e a r c h r e a l g raph and a l l i m a g i n a r i e s s t o r e d i n

snap f o r
n e a r e s t w i t h i n s n a p p i n g d i s t a n c e (p o i n t s

p r i o r i t i z e d ove r l i n e s)

i n c o r p o r a t e C h a n g e s (s n a p I d) :
c a s e r e a l node :

combine c u r r e n t node wi th found node
c a s e i m a g i n a r y p o i n t snap :

f o r e a c h l i n e i n t e r s e c t i n g :
remove edges from e i t h e r p o i n t
add edges t o c u r r e n t p o i n t

c a s e l i n e :
remove edges from e i t h e r p o i n t
add edges t o c u r r e n t p o i n t

c a s e i m a g i n a r y l i n e :
n o t h i n g

2) Math problems: For calculating lengths and angles of
activated nodes, these required some standard formulas. In
addition, calculating intersections of lines, circles, and rays,
required standard formulas. Calculating the distances between
and among points, lines, rays, and circles, too, required stan-
dard formulas. Creating the right complement angle ray to a
line used a rotation with a 2d quaternion. These are all standard
and can be found easily in a math book or StackOverflow.

In order to figure out which angles to display, I had to sort
the points emanating from a point in clockwise order. I also
needed clockwise order to figure out of there was room for a
complement angle to form; if a complement angle will actually
extend past an already existing line, then that complement
angle is not created. The following line of comparison can be
used to see if point a is before or after point b in clockwise
order around a center point (and then used in a sort function):

atan2(a.x− center.x, a.y − center.y)

< atan2(b.x− center.x, b.y − center.y)

3) Book of equations: For equations, a more flexible option
was considered, which could allow the user to input their own
equations, would be to use some kind of equation solving
program. Finding an equation solver library could speed this
up, make it easier to add new equations, and, best of all,
perhaps allow users to enter their own equations. This idea

was foregone for a hard-coded, manual approach. Using the
Pythagorean theorem, a2+b2 = c2, as an example, three cases
would need to be written, depending on which unknown value
needs to be outputted. See the pseudo-code block for a segment
showing the Pythagorean theorem.

4) Platforming: Standard 2d platforming was implemented
using Unity’s Collider, Effector, and Rigidbody components,
and off-the-shelf code. As this is not a platforming focused
game, careful configuring wasn’t needed. However, functional
diagonal ladders were a unique aspect, and were adapted from
a tutorial on straight ladders.

5) Aesthetics: A combination of masks, shaders, materials,
as well as drawn and scanned hand-drawn paper textures and
illustrations were used to produce the paper aesthetic.

f u n c t i o n ge tUnknownInEqua t ion (equa t ionType , unknown ,
known []) {

s w i t c h (e q u a t i o n T y p e) {
c a s e py thagoreanTheorem :

s w i t c h (unknown) {
c a s e 0 :

re turn s q r t (known [0] − known [1]) ;
c a s e 1 :

re turn s q r t (known [0] − known [1]) ;
c a s e 2 :

re turn s q r t (known [0] + known [1]) ;
}

. . .
}

}

C. Required Resources

1) Software: One important question concerned the
game engine to use. Options included Unity, Godot, and
GameMaker. Unity is very popular but a bit bulky with
features that wouldn’t be needed and has some annoyances
when working in 2D. Godot is a little more lightweight
option, as well as free to use commercially. GameMaker
is great for this type of 2D game, but uses GML as its
language, has less useful facilities as other languages, and
is sometimes looked down upon for being unprofessional/for
nonprogrammers. Ultimately, I decided to go with Unity, since
I have more recent experience using Unity. And because of the
large scope of Unity, this will potentially allow for additional,
notably/primarily visual, enhancements down the line. Unity
can easily export to many platforms.

Another question we had to determine was which platform
to develop for. At first, I wanted to target multiple platforms,
starting with tablet and PC. Instead, it was decided it would
be better to focus entirely on one platform, at least starting
out, which will be desktop PC, in addition to HTML/web as
this platform is relatively easy to port between.

D. Testing/Validation

The part of the program with code paths complex enough to
afford testing is the line drawing system. (However, equations
could also be tested by trying all possible equations and
unknown value combinations.) One line of testing is a stress
test: randomly drawing a bunch of lines while moving the
player character erratically. Due to some inefficient solutions,

the game can run a bit slower with many lines onscreen at
once. However, there is no reason for a user to actually do this.
The game did use to crash when doing this, due to entering
into an infinite loop; this was in the main snapping step, where
the NodeObject would try to snap again immediately after
unsnapping. But this has been identified and resolved.

Another way to test is to make sure that all snapping
categories work correctly. There are points, edge lines, angle
snap lines, self snap lines, circles, and directly connected
circles (the snap functionality shown earlier in pseudocode
only has to be familiar with four broader categories). And
all of these intersect with one another and produce imaginary
points, with some slight rule variations on whether imaginary
points should form at all from circles. To test this, imaginary
points should be deemed as functioning as expected for all
combinations.

E. User Verification/Feedback

A study can potentially be performed to see if the game
is more effective at teaching trigonometry than traditional
methods, such as through a textbook. To perform the study,
we can form two groups: one who plays the game, and the
other who reads a textbook description. A literature review is
conducted to find the usual methods of teaching trig, for the
textbook case. The groups then take the same trigonometry
test. We hypothesize that those who play the game will
perform significantly better on the test. These results will be
applicable to the applications of games, simulations, and new
media for education.

Initial play tests showed that users were confused about
how to play/proceed, and thus didn’t enjoy the game. This
appeared to be over confusion that one can drag the values
onto the equations while the book is open, and making this
more easily communicated would improve usability greatly,
as it appeared to be the main stumbling block. This will be
worked on to be improved.

IV. RESULTS & FUNCTIONALITY

The resulting program is a fairly robust geometry sketch
tool. It is fun to mess with. One can draw and connect points
and lines in an intuitive way. The lines and points can snap and
reconnect in a way that makes sense. One can form specific
lengths and angles. And these work in conjunction with the
player character. When the player stands on a node, the correct
lengths and angles appear in the right places. If a node is
moved and the player moves, these measurements are updated
dynamically, and the movement and connectivity of the nodes
is compatible and built around the idea that the player can
activate them at any time, even in mid-snap state. Moving
nodes or recombining them angle/length activates/deactivates
as expected.

In conjunction with the equations sheet, dragged values have
an arrow pointing to where they formed from, which makes a
construction look like an illustration of a math problem. The
book of equations can be used to drag the generated values
and calculate answers to the problems correctly. The player

character can move around in a physical world. After con-
structing lines, measuring them, and performing calculations
on the results with equations, the player has the correct value,
and this is verified by the game, which allows them to proceed
to the next level.

Fig. 11: All the elements of a level.

V. DISCUSSION & REFLECTION

Figuring out how to implement this was a mental journey,
one that I wasn’t sure that I would be able to make, but I am
proud that I was able to. There were many long moments of
bug fixing or being at a loss of figuring out how to incorporate
a needed feature, as well as times of scribbling notes to myself
when I found a solution. I may have in fact gotten to deep into
the geometry system, or into a rabbit hole as Dr. Whitley said.
This was in part due to perfectionism, as I wanted the lines to
be completely done before moving on. The lines are still not
completely done. There is more potential there currently, but
all that it amounts to in the levels are simple constructions
of triangles, where the equations system does most of the
work. The changed discussed in the Future Work section could
remedy this and to allow for this to be expanded into a more
fully featured geometry tool.

VI. FUTURE WORK

Our solution was challenged by round-off error, which
meant that relying on specific coordinates and easily transfer-
ring them to points and other objects were unreliable. A future
approach to reconcile this would be to create an abstract space
to mediate, where points that are similar enough are simply
combined. But this may not be completely necessary, as our
results have shown that the system in place does work as is.

There are several issues with the snapping system to be
polished over. One is that, when a line is extending, it won’t
deactivate the other nodes, if there are multiple possible
extension points, and it also won’t deactivate correctly as long
as it is snapping to something. Another issue is that sometimes
snapping simply feels buggy. These issues can be resolved by
adding more information along with the snap id: Which point
produced the imaginary point, and does it need to continue

to be activated to snap to? Does the player character need to
be in snapping distance to this new point for it to snap? And
what is the exact imaginary point, to be used in the dictionary
to find all intersected edges?

Also, more fully introducing a circle structure which is
visualized for the player could improve the systems. Currently,
the circles used for length snapping are implicit and not
displayed, but making this more overt to the user could
improve the functioning of the system, as currently there
is confusion on whether a circle should even generate an
imaginary point, which this would resolve.

An angle snap circle emanating from the current moving
node is currently not generated, which means it’s not possible
to form an exact angle when moving the node your character
is standing on. The reason for this, is that this snap shape
would only be a circle for forming 90 degree angles; for other
angles, it would actually be a superimposed set of ellipses
(which would need to be rotated arbitrarily as well), which is
why this feature is nontrivial but could be added in the future.

Fig. 12: Shape formed showing where a middle point would
have to be to produce a given angle between two points

I would like to license the song ”Particle Man” by They
Might Be Giants to use in this game, which is thematically
relevant, as the game takes place in an absurd but intellectually
curious world. A more expansive world, with more levels and
more character dialogue (inspired by the song), needs to be
added.

Finally, there are numerous stretch goals that can be added
to the project, given enough time, which would involve random
generation to create new content, as well as an editor and a
server to upload and download custom levels from. This would
involve utilizing databases. The randomly generated challenge
would involve a new mechanic, in which the player can make
physical triangles appear, once all angles on them have been
measured, as solid objects that can be climbed on. The physics
can easily be implemented in Unity. The goal of the mode
is to ascend a randomly generated tower structure. The user
generated mode would allow users to place down platforms
into an editor, in addition to a length value that needs to be
found to win the level; these would then be uploaded to a
database for others to play.

I am planning to continue working on this project for the
foreseeable future. My next immediate steps are to focus on
some of the visual polish: character animations and more paper
effects. Then I want to improve the new player experience, so

Fig. 13: Idea for more expansive world, characters, and story

that people know they can drag the values onto equations,
to get some better feedback. From there, it is back into the
geometry system to implement and fix the changes listed above
(it’s almost there!). And finally, fleshing out the game and
expanding its world and story to be an effective teaching tool
would be my ultimate goal.

REFERENCES

Almeqdadi, Farouq. “The Effect of Using the Geometer’s
Sketchpad (GSP) on Jordanian Students’ Understanding of
Geometrical Concepts.” Proceedings of the International Con-
ference on Technology in Mathematics Education, July 2000,
files.eric.ed.gov/fulltext/ED477317.pdf.

Compton, Kate, and Michael Mateas. “Procedural
Level Design for Platform Games.” Association for
the Advancement of Artificial Intelligence, 2006,
www.aaai.org/Papers/AIIDE/2006/AIIDE06-022.pdf.

Cruickshank, D.R., and Ross Telfer. “Classroom Games and
Simulations.” Theory Into Practice, vol. 19, no. 1, 1980, pp.
75–80., doi:10.1080/00405848009542875.

Eliens, Anton, and Zsofia Ruttkay. “Math Games: An Al-
ternative (Approach) to Teaching Math.” GAMEON, 2009,
research.utwente.nl/files/5381162/paper-math.pdf.

Famularo, Jessica. “The Best Game Engines for Making
Your Own 2D Indie Game.” Pcgamer, PC Gamer, 28 Sept.
2017, www.pcgamer.com/the-best-2d-game-engines/.

Gelfand, IM. Trigonometry. Birkhauser, 2001. The book
can be accessed at https://users.auth.gr/ siskakis/GelfandSaul-
Trigonometry.pdf.

Jean Justice, Lenora, and Albert D. Ritzhaupt. “Identifying
the Barriers to Games and Simulations in Education.” Journal

of Educational Technology Systems, vol. 44, no. 1, 2015, pp.
86–125., doi:10.1177/0047239515588161.

Kendal, Margaret, and Kaye Stacey. “Trigonometry:
Comparing Ratio and Unit Circle Methods.”
Education. Proceedings of the 19th Annual,
1996, citeseerx.ist.psu.edu/viewdoc/download
doi=10.1.1.408.6413&rep=rep1&type=pdf.

Liu, Chen-Chung, et al. “The Effect of Simulation Games
on the Learning of Computational Problem Solving.” Com-
puters & Education, vol. 57, no. 3, 2011, pp. 1907–1918.,
doi:10.1016/j.compedu.2011.04.002.

Monteiro, Rodrigo. “Higher-Order Fun.” HigherOrder Fun
RSS, 20 May 2012, higherorderfun.com/blog/2012/05/20/the-
guide-to-implementing-2d-platformers/.

Nordin, Norazah, et al. “Pedagogical Usability of

the Geometer’s Sketchpad (GSP) Digital Module in the
Mathematics Teaching.” The Turkish Online Journal
of Educational Technology, vol. 9, no. 4, Oct. 2010,
files.eric.ed.gov/fulltext/EJ908077.pdf.

Shute, Valerie J, and Yoon Jeon Kim. Design Research
on Learning and Thinking in Educational Settings Enhancing
Intellectual Growth and Functioning, Routledge, 2011, pp.
243–263.

Image References

Foldit. (n.d.). Retrieved October 02, 2019, from
https://fold.it/ Scratch. (n.d.). Retrieved October 02, 2019,
from https://scratch.mit.edu/ Tbaisd. (n.d.). Retrieved October
02, 2019, from https://www.tbaisd.org/ World Of Goo From 2d
Boy. (n.d.). October 02, 2019, 2021, from https://2dboy.com/

