
Story Generation in Butterscotch Shenanigans’ Games: Inside and Out

By Maximilian Levine

Butterscotch Shenanigans (BS) is an indie game

development studio based out of St. Louis founded by

the three, tight-knit Coster brothers: Adam, Sam, and

Seth [1]. The games Crashlands and Levelhead were

their first foray into larger, nonmobile apps.

Crashlands is a survival crafting game in which the

player crafts varying tiers of resources and completes

quests to advance the game’s rich sci-fi story.

Levelhead is a platformer game in which players build

and upload their own levels for others to play. Each

game has in common their use of content-generative

systems. Despite being very different games, the

stories within, the stories surrounding, and the stories

generated by, these two games bind them together:

there is the story of a fight with death, and of learning

and growing skills; and in the games, there is a

contiguous growing lore about a whimsical and absurd

universe, novel systemic/emergent based experiences

that the player discovers, and absurd stories to inspire

joy.

It was only in the last quarter of development

though that the brothers began adding dialogue and

story to Crashlands. To do so, Adam developed a

browser-based app called the Crashlands Creator.

Through this, the brothers were able to add and edit

dialogue, stories, quests, and structures into the game.

Similarly, for Crashlands 2 (which is currently in

development), they are creating a tool called the Game

Changer, which easily allows for many aspects of

content—enemy types, interactions, stats, etc.—to be

tweaked while the game is running. The purpose is to

be able to tune the systems to produce the best

emergent stories. Creating this tool was inspired by

their previous game, Levelhead; it was incredibly easy

to bug test and experiment, since the built-in editor

easily let them set up and test scenarios [3].

In Crashlands, the map is infinite, using Perlin

noise to delineate biomes and spawn resources, and

spawning enemies randomly. Levelhead, on the other

hand, uses user-generated content, as players build and

upload levels for others to play, again offloading

developer work and aiming to produce near infinite

content. In this way, the procedurally generated

content of Crashlands and the user-generated content

of Levelhead had much the same result: cheap,

theoretically endless content generation. BS was in a

Levine 2
great position to make Levelhead, after Adam gained

web and database experience, as well as creating

editors and tools like the Crashlands Creator.

BS’s games take place in the same fictional

universe, and are centered around the Bureau of

Shipping (which, ironically, like the name of the

studio, shortens to “BS”). In Crashlands, the

protagonist, Flux Dabes, is an intergalactic trucker for

the BS trying to deliver packages when they crash land

on planet Woanope, which is rich with a resource

called juice, which the antagonist is trying to harvest.

There are tensions between the antagonist, alien

inhabitants, and trying to deliver packages on time. In

Levelhead, the player takes on the role of an employee

within the BS. The ingenious framing of Levelhead

puts the player in charge of training robots to deliver

packages in “every possible delivery scenario.” Thus,

building levels and playing them trains the delivery

robot, called GR-18, to deliver packages across

challenging terrain. This fictional layer adds to the

meaning of playing and building levels.

The brothers also pulled from real life. The

second area of Crashlands, called the Bawg, is entirely

made of living flesh, and the final boss there, Toomah,

is a cancerous tumor. This storyline was a reference to

Sam’s battle with cancer. BS started development of

Crashlands when Sam got cancer, and asked the

question, “What if this is the last game I ever make? I

want it to be important.” Sam, who was the artist,

began drawing the game’s many assets while in

chemotherapy. The three brothers then united under

the studio name to make Crashlands a reality [2].

One of the reasons BS may lean into absurdity

is their parents, who limited their video gaming in their

youth and encouraged them to make a positive

difference in the world. Making the games funny is a

way to brighten players’ days, and their step-father

says, as long as making games engages their brains, it

can’t be a bad thing [2]. And BS’s game stories are

absurd: Extreme Sloth Cycling was about riding a sloth

as a motorcycle, and Towelfight 2 was about shooting

animals out of your face/monocle.

In addition to Crashlands, all of BS’s past titles

harnessed randomness to produce content. So it will be

informative to discuss the state of the art in procedural

generation, or proc-gen. One of the first examples of

proc-gen is from 1740, where a mix and match booklet

of Mozart measures allowed users to form unique

waltzes never heard before [4]. Other examples include

Levine 3
astrology, mosaics, crochet, and, more recently, stable

diffusion and GPT-3 [5].

For terminology, the procedure/algorithm is

called a generator, and the results are called artifacts.

It is a misconception in the industry that proc-gen can

cheaply generate endless content. No Man’s Sky, for

example, boasts in its marketing having 18 quintillion

planets, but players quickly became bored with the

“samey” planets. Dr. Kate Compton [4] calls this the

“10,000 bowls of oatmeal problem”: technically they

are unique, but they all taste the same. This is not

always bad, for creating texture like the many trees that

populate a landscape, but it doesn’t work well for

forming core game features.

To study generators, we first define an ideal

generator 𝐺 as one that has terminability (it always

outputs something), fixed input size (it accepts input of

a set length), and injectivity (different inputs give

different outputs). An ideal generator then has these

qualities: The length |𝐺| is the compressed size of its

source code. The possibility space size is the number

of unique artifacts, denoted 𝑃(𝐺), as well as 𝑝(𝐺),

which is log!𝑃(𝐺); this happens to correspond to how

many bits would be needed to label each artifact.

Finally, there is Kolmogorov complexity, which is a

measure of how many natural language words would

be needed to describe an artifact: 𝐾(𝐴) is the

description size of artifact 𝐴, 𝐾∗(𝐺) is the most

complex, and 𝐾,(𝐺) is the average across all artifacts.

Low K-complexity is simple and repetitive, but too

high K-complexity is noisy, with no discernable

pattern. Using these metrics, we can form several

inequalities constraining a generator: 𝐾∗(𝐺) ≥ 𝑝(𝐺)

because a label would need to have more bits than the

largest artifact, |𝐺| + 𝑝(𝐺) ≥ 𝐾∗(𝐺) because the size

of the source code plus labeling all artifacts must of

course have higher complexity than just one of the

artifacts, and finally 𝐶# + 𝑃(𝐺) ∗ 	𝐶$ + ∑ |𝑃%|	 ≥ |𝐺|

puts an upper bound on |𝐺| by essentially redefining

the generator such that it is a list structure that is

queried (𝐶# and 𝐶$ are commas) [5].

Using these inequalities, we can constrain a

generator into a finite, triangular space, where there is

a tradeoff between cost and scale. Cost represents the

human effort, or encoded knowledge, that the

generator must contain. Rabii puts the expense of

human effort in terms of coffee [5], and Compton calls

imbuing a generator with domain knowledge as

“making an artist in a box” [4]. Compton recommends

finding an expert or at least reading their writing; for

Levine 4
example, to make Spore, she interviewed Disney

animator John Cimino about how to model creatures.

Scale represents how many artifacts are possible;

decreasing scale can increase the quality of artifacts,

but at the cost of having less artifacts. In Minecraft, for

example, in order to add villages, changing scale was

not an option, since there are a set 2&' seeds [6], thus

human effort and knowledge about villages was

needed. Many interesting results can follow from these

inequalities, such as estimating possible artifacts just

from the size of a program [5]!

Compton recognizes many methods for

creating proc-gen content. Tiles, square, hexagonal, or

otherwise, can form a foundation. Grammars/recursion

can generate content; Dr. Jorin Dormans did this to

great effect in Unexplored, where a key is placed

behind a door that you need another key to get to, etc.

Another method is distribution, where items are placed

randomly, or via procedures like barnacling (placing

smaller next to bigger), footing (making adjacent

elements interact), or greebling (adding texture). Other

methods than distribution include parametric and

interpretive. Subtractive methods can then be used to

manage results: either through blacklisting seeds

manually, or by enforcing an algorithmic quality

assessment.

Procedural Level Generation via Machine

Learning (PLGML) is a ML method relying on levels

annotated by humans, and as such only works for

levels that have been annotated (such as Super Mario

Bros.). To extend the usefulness of this, Jadhav

proposes a method working on 2D tilemap games,

using autoencoders to transfer learning from annotated

games to those that haven’t been human-annotated [7].

BS aims for their games to be designed, fun

experiences, and they recognized the limitations of

Crashlands’ proc-gen. One limitation imposed by

Perlin noise was that objects generated could only be

one tile wide. And overall, it led to an “oatmeally” [5]

experience where there was no reason to keep track of

landmarks—anywhere you walked would produce the

same result. So, BS is building Crashlands 2 with a

hand-built map—a departure from its prequel. The

flexible Levelhead editor may have inspired this [4].

Storytelling is an important aspect of BS’s

games, whether generated traditionally, emergently, or

algorithmically. It’s certain their next games will

create or curate powerful storytelling, no matter which

methods are used.

Levine 5
Works Cited

[1] “Butterscotch shenanigans,” bscotch.net, https://www.bscotch.net/about. (accessed Nov. 27, 2023).

[2] J. Reichmuth, Director, A. Summerfield, Producer, A Crashlands Story: Dev Diary, Jan 21, 2017 [Video].

St. Louis, MO: Forever an Astronaut, 2017 (accessed Nov. 27, 2023).

[3] Adam, Sam, Seth Coster, Speakers, Coffee With Butterscotch, 2017-23. St. Louis, MO: Butterscotch

Shenanigans. [Podcast]. Available: podcast.bscotch.net. (accessed Nov. 27, 2023).

[4] K. Compton, “Practical Procedural Generation for Everyone,” in Game Developers Conference, San

Francisco, CA, 2017. [Online]. Available: https://www.youtube.com/watch?v=WumyfLEa6bU.

(accessed Nov. 27, 2023).

[5] Y. Rabii, “Why Oatmeal is Cheap,” in Strange Loop Conference, St. Louis, MO, 2023. [Online]. Available:

https://www.youtube.com/watch?v=nq5C82Nn7XM. (accessed Nov. 27, 2023)

[6] David, “How many minecraft seeds are there?,” Apex Hosting, https://apexminecrafthosting.com/how-

many-minecraft-seeds-are-there/. (accessed Nov. 27, 2023).

[7] M. Jadhav and M. Guzdial, “Tile Embedding: A General Representation for Level Generation”, AIIDE, vol.

17, no. 1, pp. 34-41, Oct. 2021. Available: https://ojs.aaai.org/index.php/AIIDE/article/view/18888.

(accessed Nov. 27, 2023).

