Note On Authorship

Although there are multiple coauthors listed, | was the main person who wrote the text of
this paper. Zhang collaborated with me on the research, and Schiffer served as our
mentor and guide to the project.

The paper was later adapted to one that was published in the Proceedings of the 17th

International Joint Conference on Computer Vision, Imaging and Computer Graphics
Theory and Applications — HUCAPP, but this version was not published.

-Max Levine

Neural Networks for Meta-Emotions

Samantha Zhang*, Maximilian LevineT, Sheldon Schiffer
Department of Computer Science
Cornell University*, University of North Carolina at Asheville, Georgia State University*
Email: sjz46 @cornell.edu®, mlevine@unca.eduT, schiffer@ gsu.edui

Abstract—To increase Non-Player Characters’ (NPCs) realism,
we trained recurrent neural networks modeling human emotion
patterns. We generate training data by putting acting footage
through Facial Expression Recognition (FER) software. We used
4 different actors reacting to each other in a simulated police
investigation setting. Using Blender, we created 3D models of the
actors’ heads and animations of Paul Ekman’s 6 basic emotions.
In Unity, two head models face each other, with cameras coming
from their eyes to view the other. We allow the heads to receive
an emotion vector and animate them changing emotions. The
neural network can eventually be attached to the Unity scene, to
make the faces react to each other intelligently.

I. INTRODUCTION

Non-Player Characters (NPCs) are characters in a video
game that populate the game world, interact with players, and
contribute to immersion. Current NPCs, typically controlled
with finite state machines, are predictable. Unrealistic inter-
actions break the player’s immersion. The quality of NPCs is
essential, as people are good at identifying uncanny humans.
The face is the most expressive part of the human body. We
aim to design a system standardizing more thoughtful NPCs
through the complexity of facial expressions. By making an
emotion model that supports a high degree of facial com-
plexity, we hope to increase NPC believability. Making NPCs
more intelligent and realistic is a fundamental, challenging
problem. And by giving actors the creative control to frame
NPC behavior, we can have more realistic and expressive
NPCs.

II. RELATED WORK

The problems with current NPCs, their limitedness and
predictability, and their importance with regards to immersion
in games, are discussed by Paige [8]. The standard way of
controlling NPC’s behavior is through finite state machines,
directed graphs which define actions on nodes and causes on
edges. For example, a guard will change from standing to
attacking when seeing the player. But as the name suggests,
any implementation of this method will be limited and finite.
An improvement on the finite state machine is the fuzzy finite
state machine. This allows for multiple possible transitions
from one state, depending on other variables. For example,
whether the guard attacks is determined by its relationship to
the player. Clearly, these prior methods are very predictable.

Kozasa, in a pioneering 2006 work, created an artificial
neural network using current NPC emotion parameters and
user’s interaction, physical action, and input expression. The
NPC has a certain personality and mood. The system took

as input dialogue, which can be speech or text, as well as
the player’s facial expression. This is put through a neural
network, and then the system outputs one of five possible
emotions to be displayed on a 3D face, as well as a text or
spoken response. The emotion may influence future decisions.
To train the network, Kozasa and their team manually wrote
their own training data. This was a process in which the team
recorded many different levels of states of emotions, and then
tried to predict what the response would be like, which limited
the amount and quality of the training data. However, we agree
that a neural network is a great way to process emotions,
with its similarity to the human brain and built in fuzziness
of response. [2]

Zhou created an NPC model simulation using the Pleasura-
bility, Arousal, Dominance (PAD) emotional state model and
vectors to determine emotions, set in a mining rescue scenario
[11]. PAD, and other attempts at systematizing emotions, are
shown in Fig. 1. It is best to stick to an emotional model’s
elements and avoid abstraction.

“Facial Animation
Using Emotional
Model” by Kozasa

PAD Emotional
Model by Russel &
Mahrabian

Circumplex Model of ~ Paul Ekman’s Basic
Affect by Russell & Emotions
Mahrabian

The Big Five

Represented on a 2d | Happy, sad, angry,
circular space with surprised, scared,
degrees of disgusted, and neutral
p 3 X

arousal/non-arousal, |active/inactive We use Ekman’s
basic emotions as an
emotional model for
our research as it is
widely accepted in the

Core Affect is
determined by

Emotional parameters |Extroversion,

as extroversion, agreeableness,
agreeableness, conscienti ess,
valance, arousal, neuroticism, and
likeability, and
intimacy, as well as scale from O to 1.
possible input actions [Widely accepted in
and the input marketing and game .
expressions of design. imperfect blob-cone emotional intelligence
neutral, smile, anger, coming from the origin industry and many
sadness, and surprise out of the sphere. resources, like FACS
[2. coding, are founded
on this model [5].

openness, each on a |dominance/submissiv | (@rousal) and

pleasant/unpleasant

eness. Any discrete
(valance)

emotion label can be
represented as an

Fig. 1: Ways of representing personality and emotion.

Another method is the Facial Action Coding System
(FACS), which is regarded as the standard objective measure
of facial expressions. FACS describes every unit of discernible
muscle movement on the face. FACS consists of 51 Action
Units (AUs), which are the smallest units of visible muscle
movement. In order to get results using FACS, a trained,
human coder has to go frame by frame, measuring the facial
expressions on each frame, which is cost and time intensive
[5]. However, Facial Emotion Recognition (FER) software to
automate this process, such as FaceReader and Affectiva, is
becoming an alternative.

To process a face, FaceReader first finds where the face
is; it does so with the Viola-Jones algorithm. Then, it creates
a 3D mesh of this face that includes all of the key points
with the Active Appearance Method. Finally, a neural network
classifies the facial expression. If steps one or two fail (due to

the face being only partially visible), then the fallback, called
Deep Face, simply uses a neural network without the pre-
processing. All of these neural networks are trained both by
databases of actors making the expressions, as well as images
coded by FACS coders. FaceReader uses the AUs to determine
the 6 basic emotions. [4]

Psychologists Ortony, Clore and Collins were among the
first to propose an emotional model to be simulated on a
computer. Psychological and computational models of emo-
tion were developed to have some systematic description of
emotion that could be translated into software [7]. For this,
Ortony et. al developed appraisal theory. Appraisal consists
of assessing the environment, which impacts internal beliefs.
These theories both jive well with the performance theory that
entertainment actors follow: actors are best able to imitate an
emotion by addressing their affective memory, i.e. actually
reliving the emotion based on experience. Under this model,
emotions are determined through a process of appraisal of
the environment. The environment is built of inanimate ob-
jects with a certain likability, animate agents with a certain
praiseworthiness, and events with a given desirability. Apprais-
ing the environment of these aspects results in affirming or
dis-affirming beliefs, fulfilling desires, and enabling or dis-
enabling intentions. Finally, there is a process of reappraisal,
which adjusts the beliefs, desires, and intentions to the situ-
ation. This system represented emotions with the circumplex
model of affect, or Core Affect (see Fig. 1). In 2014, Dias et. al
implemented a computational cognitive psychology system in
the form of FAtiMA that implemented a version of the affect
model [10].

Schiffer did an experiment to test a computational emotion
system. The first step was to create the environmental situation
that the agents would be performing in. This consisted of a
graph structure that represented varying states, attributes such
as goals and obstacles, possible actions with corresponding
facial animation, resulting emotions, and many possible paths
through the graph. Video data was collected of an actor acting
out all paths through the graph. A neural network was trained
to handle video input of a player playing the game and
interacting with the NPC through dialogue choices as well
as facial expression [10].

III. METHODOLOGY & IMPLEMENTATION
A. Emotion Model

We based our NPCs emotion model on Paul Ekman’s 6 basic
emotions (see Fig. 2). Rather than modeling single emotions,
our model combines different intensities of each emotion. We
chose Ekman’s model due to the extensive amount of resources
supporting it.

B. Neural Network

Using a system of several recurrent neural networks trained
to an actor’s character, we can predict the character’s fa-
cial expressions. The idea of training a neural network has
similarities to training actors. Looking at this more closely
provides some justification for using neural networks to make

Fig. 2: Ekman’s 6 basic emotions on two actors. From left to
right: anger, disgust, happy, sad, scared, surprised.

intelligent NPCs. The Meisner technique trains actors through
repetition to build a character using affective memory [6].
Actors call on their memory of similar emotions to determine
their character’s feelings. So, by repeating action exercises, an
actor can train their brain through memory towards creating
a character. This technique is similar to how neural networks
are trained. We can enter repeated scene footage data to train
the neural networks on how an NPC character should act.

C. Collecting Data

FER software can be used on acting footage to generate
emotional training data for a character’s neural network.
Actors were recorded while acting scenes of their characters
in response to stimuli, a simulation of a police investigation
scene. One actor serves as an investigator while the other
serves as a suspect. 288 total video recordings were compiled
for each actor, with each scene being shot 9 times. By running
this footage through FaceReader, we generated emotion data
for each actor’s character. Performing 3 emotion analyses each
second, FaceReader measured the intensity for each of the
emotions.

D. Modeling Emotional Data

Fig. 3: Constructing meshes of actors using FaceBuilder.

KeenTools’s FaceBuilder plugin for Blender allows for the
creation of 3D models of faces. Using photos of an actor’s
face at orthographic angles, we reconstructed their face and
generated textures for the 3D polygon face meshes (see Fig. 3).
FaceBuilder also produces shape keys in Blender for Ekman’s
51 AUs on the mesh, which allow users to deform objects into
new shapes for animation. We determined the AUs to use and
combine by referring to the iMotions emotional structure on
AU s for the basic emotions and matching an image of the actor
at the highest respective emotional intensity [3]. Sometimes,
additional AUs were added somewhat subjectively by looking

at the reference photos; for example, the emotion disgust
usually does not include squinted eyes, but one of our subjects
expressed squinted eyes for the emotion, so that AU was added
to their model. Degree of AU activation was determined by
matching the apparent activation in the reference photos. The
photos were 6 stills chosen from the acting footage data. We
combined multiple AUs into discrete emotion labels as new
shape keys, by using the New Shape Key From Mix option
in Blender to combine AUs. We then exported the face object
from Blender and its respective shape keys as an FBX file for
facial animation in Unity.

E. Animating Emotions in Unity

disgust: 0.51
ang
appy:
@
scared: 0.46

H

A
4‘ ”

>

surprised: 0.75

Randomize Expressions

surprised: 0.03
@

Randomize Expressions|

Fig. 4: Model A (left) and Model B (right) facing each other
in Unity, with controls for emotional expression.

Blender shape keys are translated into Unity blendshapes.
The blendshapes for the 6 emotions can be adjusted and also
combined, which allows us to express meta-emotions, creating
more realistic results. We set up two heads in Unity with GUI
sliders to control the blendshapes and each of their emotions.
We allowed the heads to rotate to face each other. Cameras
were aligned with their eyes so that, in the future, they can
receive input from the other’s expression. We implemented a
random expression generator to send data to the models, for
when the neural network is applied to our system. A button
press generates a random 6D emotion vector. Then the current
blendshape values are linearly interpolated incrementally to
the vector over a given duration. Thus, we gradually animate
the original facial expression to a target emotional expression.
(See Fig. 4)

F. Technologies

The following technologies were used to complete the
project: FaceReader, Affectiva (Beta), FaceBuilder, Blender,
Python, Unity, C#, Google Sheets.

IV. RESULTS & CONCLUSIONS

The error of our six basic emotions is negligible, the primary
difference differing on average by 0.3%. We determined the
accuracy of our system by running the images of the 6 optimal
stills from the acting footage of two actors and 6 images
of each emotion blendshape at max intensity for the Unity
heads of their respective actors through Affectiva (Beta), a
FER software. Then, we calculated the mean difference for

each emotion between the actor image and the corresponding
animated face image, treating the actor image data as our truth
values (see Fig. 5).

The primary difference indicates only the emotion that was
being tested for, e.g. the happiness value when comparing the
actor still and Unity model for happiness. The secondary dif-
ference averages the traces of emotions detected by Affectiva
that were not being tested for, but which still may maintain
consistency across the actor still and Unity model.

Emotion Difference Between Model A Actor and Unity Stills
W Primary Difference [l Secondary Average of Differences
0.01500

0.01450
0.01000

0.00500

0.00135

0.00011 -0.00170

|| N
0.00000 0.00007 0.00000 -0.00029

Happy Sad

0.00279 -0.00499

0.00000

-0.00500

000043 000670

Anger

-0.01000

Disgust Scarsd Surprised

Emotion

Emotion Difference Between Model B Actor and Unity Stills
B Primary Difference [l Secondary Average of Differences

0.02000 TOTE0T

0.01000 0:00497

0.00000 —.

0.00001

0.00007 0.00005 0.00001 0.00102

-0.00075 000005 gpozsg 0.00149

-0.01000

-0.02000
-0.02000

-0.03000

Anger Disgust Happy Sad Scared Surprised

Emotion

Fig. 5: Mean difference between actor stills and Unity
models of each emotion when put through Affectiva.

Looking only at the primary difference, we obtained the fol-
lowing average percentage of error by emotion: 0.00% happy,
0.01% sad, 0.72% angry, 0.07% surprised, 0.00% scared, and
1.04% disgusted, for a total average of 0.30%. Looking at
the secondary differences, we obtained the following average
percentage of error by emotion: 0.01% happy, 0.21% sad,
0.01% angry, 1.73% surprised, 0.32% scared, and 0.18%
disgusted, for a total average of 0.42%.

Affectiva is typically used for processing video and not still
images. It utilizes convolutional and recurrent neural networks
[1], and its assessment of an input, even a still image, changes
over time. So we calculated the variance over time for each
emotion, stills off which were put through Affectiva for 1
minute each (see Fig. 6).

We are able to conclude that our system for converting
an actor’s emotion into a Unity model was accurate within
less than 1% of error. And the error that appeared in our
analysis made sense: variances and differences occurred less

for happy, sad, and scared, and more for anger, disgust, and
surprise. The reason for this is likely that the former emotions
are more represented in databases of training data for neural
networks, whereas the latter emotions are less represented and
thus harder for FER software to recognize [9].

Variance
@ Actor A Unity
@® Primary @ 2nd Happy 2nd Sad @ 2nd Anary @ 2nd Surprised 2nd Scared 2nd Disgusted
- 0.08
0.06
2
004 £
® , g
0.02
L
2 s
JEE— - \ - 0.00
Happy Sad Angry Surprised Scared Disgusted
- 0.08
0.06
2
. 004 <
5
® >
0.02
_ . - . . || 0.00

Happy Sad Anary Surprised Scared Disgusted

Emotion

Fig. 6: Variance of Affectiva output over 1 minute analysis
of actor and Unity model stills.

V. FUTURE WORK

In the future, we can fully integrate the recurrent neural
network system into our Unity facial animator program. We
can then further improve our calculations on the accuracy of
this system by comparing emotional data generated from the
reaction of an actor to a stimulus to the reaction of the facial
animation controlled by the neural network.

We would also like to converge an accurate error coefficient
for FER programs. FER is imperfect and produces different

results for a real actor and their model. Through iteration,
we can determine a coefficient to get the results for the actor
and model to be the same. This would effectively make the
variance seen in Fig. 6 zero.

Another avenue of research would be to find crowd sourcing
methods to produce better training data for neural networks
for emotions. To do this, we could gather various correlations
between emotions and response in order to create a function
that would be able to reasonably predict possible emotional
response. We can use crowd sourcing to gather this data, by
asking participants to identify correlations, or answer yes or no
questions about randomly chosen correlations. Data could also
be collected remotely from actors using FaceReader Online.

ACKNOWLEDGMENTS

This material is based upon work supported by the National
Science Foundation. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the National
Science Foundation.

We would like to thank Georgia State University and CSCI
Faculty, our fellow REU interns, and the National Science
Foundation.

REFERENCES

[1] Affectiva, Science Deep Dive Series: How Affectiva Brings Emotional
Intelligence to Technology with Algorithms. Accessed 28 July 2021.

[2] H. F. Chihiro Kozasa. Facial animation using emotional model. Inter-
national Conference on Computer Graphics, Imaging and Visualisation
(CGIV’06), 2006.

[3] iMotions. Facial action coding system (facs) — a visual guidebook.
Accessed 19 July 2021.

[4] O. K. Leanne Loijens. Facereader methodology note. Noldus Informa-
tion Technology, 2019.

[5] P. Lewinski, T. den Uyl, and C. Butler. Automated facial coding:
validation of basic emotions and FACS AUs in FaceReader. Journal
of Neuroscience, Psychology, and Economics, 7(4):227-236, 2014.

[6] S. Meisner. Sanford Meisner on Acting. Vintage Random House, 1987.

[71 A. Ortony, G. L. Clore, and A. Collins. The cognitive structure of
emotions. Cambridge University Press, pages 34-58, 1990.

[8] N. Paige. How to create smarter npcs in games. Medium, 2020.

[9]1 R.Panda, H. L.J. Zhang, J. Lee, L. X, and A. Roy-Chowdhury. Contem-

plating Visual Emotions: Understanding and Overcoming Dataset Bias.

Proceedings of the European Conference on Computer Vision (ECCV),

pages 579-595, 2018.

S. Schiffer. Bridging the Gap Between Al, Cognitive Science, and

Narratology With Narrative Generation. 1GI Global, 2021.

C. e. a. Zhou. Affective computation based npc behaviors modeling.

IEEE/WIC/ACM International Conference on Web Intelligence and

Intelligent Agent Technology Workshops, 2006.

[10]

(11]

