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1 Graphs give rise to metric spaces

A metric space is a set with a function d that assigns a metric (or “distance”) between any two
elements of that set. A metric space must satisfy these properties:

1. d(x, y) ≥ 0 and d(x, y) = 0 ⇐⇒ x = y

2. d(x, y) = d(y, x)

3. d(x, y) + d(y, z) ≥ d(x, z)

A graph structure is defined as G = (V,E), where a collection of vertices V are connected by
edges E. We can reach adjacent vertices from any vertex by following the edges that connect them
to other vertices. We will only consider connected graphs, where it is possible to reach all vertices
starting from any vertex. The distance function d, for any two vertices, is defined by the least
number of edges required to travel from one vertex to the other.

Proof. In order to prove that a connected graph is a metric space, we need to prove that the above
3 properties hold.

1. In order to calculate d, we start at count 0, and only increase that count for each edge
traveled while moving to the destination. Therefore, d must be greater than or equal to 0.
Furthermore, the only way for the count to be 0 would be if we didn’t travel along any edges,
which would increase the count. If we don’t travel along any edges, then we must have stayed
on the starting vertex. And, if we stay on the same vertex, then we haven’t increased the
count by moving along any edges. Therefore d(x, y) = 0 ⇐⇒ x = y.

2. The same edges between x and y are between y and x, and the edges forming the shortest
path are also the same. Say that the collection of edges {e1, e2, ..., en} denotes a shortest
path from x to y. Then the same set of edges reversed, {en, en−1, ..., e1}, will be a shortest
path from y to x. There may be multiple such paths, but their count will be the same. Thus,
d(x, y) = d(y, x).
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3. Consider that

a. If d(x, y) + d(y, z) < d(x, z), then d(x, z) is not the shortest path.

The path from x to y and then from y to z would be shorter. We can already stop here and
assert that it’s impossible for d(x, y) + d(y, z) < d(x, z). In order to prove that the inverse of
the equality is not simply vacuously true, i.e. that d(x, y) + d(y, z) ≥ d(x, z), consider that

b. If d(x, y) + d(y, z) > d(x, z), then that means that y is simply off of the shortest path
between (x, z). This can only add distance to the left side of the inequality, as it’s
impossible for a distance to be negative, as shown in (1).

Therefore d(x, y) + d(y, z) must be greater than or equal to d(x, z).

Since these three properties have been satisfied, we can conclude that a graph gives rise to a
metric space.

2 Exploring the combinatorics of a triangle tiling

See Figure 1 for a tiling of triangles with 8 triangles met at each vertex, extended for 3 spheres.
Following from the previous section, this structure can be modeled as a graph, but we won’t be
looking at its metric properties.
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Figure 1: 8 triangle tiling to S3.

Instead, we are looking at two types of vertices: vertices with just one edge pointing back
towards center vertex v0 (type 1), and vertices with two edges pointing back toward v0 (type 2).
From Figure 1, we count the amount of each type of vertex in the first 3 layers:

n sn (type 1) tn (type 2)
0 n/a n/a
1 8 0
2 24 8
3 88 33
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From this, we can generalize recursive formulas for the amounts of each type of edge in suc-
ceeding layers:

sn = 3sn−1 + 2tn−1

tn = sn−1 + tn−1

We use these formulas to calculate s4, s5, t4, and t5 below.
We can then use these formulas to calculate the number of edges contained by a sphere/spherical

shell, denoted as Sn(v0), as well as a solid cloud/ball, denoted as Bn(v0). We can get |Sn(v0)| by
combining both types of edges, sn+ tn, for each n. To get |Bn(v0)|, we must add in all prior layers,
which are included by the solid sphere.

n sn (type 1) tn (type 2) |Sn(v0)| = sn + tn |Bn(v0)| =
n∑

k=0

|Sk(v0)|

0 n/a n/a 1 1
1 8 0 8 9
2 24 8 32 41
3 88 33 120 161
4 328 120 448 609
5 1224 448 1672 2281

Figure 2: Sn and Bn as n increases look exponential.

Figure 2 shows the last two columns plotted out. From this, they appear to be exponential,
which would make them O(n2).

Now we wish to find a general formula for tiling with k number of triangles. The formulas for
the amounts of each type of vertices in a tiling of 7 triangles were
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sn,7 = 2sn−1 + tn−1

tn,7 = sn−1 + tn−1

Comparing these with the formulas for a tiling of 8 triangles, it’s apparent that tn remains the
same for both values of k. And the difference for sn appears to be varying the coefficients by a
factor of 1. We can hypothesize a general formula for when k ≥ 7:

sn,k = (k − 5)sn−1 + (k − 6)tn−1

tn,k = sn−1 + tn−1

For very large values of k, sn,k becomes much larger than tn,k, k times larger. In other words,
limk→∞ sn,k = k ∗ tn,k. This is supported by Figure 2, as the shape of the graph looks the same;
only the scale is changed.

This structure can be seen as a model of hyperbolic space. In this space, if we define a line as
a path on the graph that doesn’t ever cross itself, there are infinitely many parallel lines passing
between any two points, a sort of reversal of the Euclidean parallel property (this should be easily
envisioned, looking at Figure 1). Below, we will prove a simple result in hyperbolic geometry,
one in a series showing that the axioms other than the parallel postulate do transfer between the
geometries.

3 Verifying Hilbert’s betweenness axiom 3 for Klein’s model

We wish to show that this axiom follows from Hilbert’s Euclidean geometry into Klein’s hyperbolic
geometry:
Betweenness Axiom 3: If A, B, and C are three distinct points lying on the same line, then one
and only one of the points is between the other two. [Greenberg]

Proof. Suppose we have points P , Q, and S that are all distinct and lying on the same line ℓ in
the hyperbolic plane. This can be seen in Figure 3 below.
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Figure 3: Line in hyperbolic

From our hypothesis, we know P ∗ S ∗Q. By way of contradiction, suppose P ∗Q ∗ S. Thus,
we have P ∗ S ∗Q and P ∗Q ∗ S. However, if we extend the line into the Euclidean plane (Figure
4), this violates the definition of betweenness in the Euclidean plane.



Levine 7

Figure 4: Line in Euclidean

Since the hyperbolic plane inherits the betweenness definition used in the Euclidean plane,
P ∗S ∗Q and P ∗Q ∗S is a contradiction. Therefore, betweenness axiom 3 holds in the hyperbolic
plane.

4 Incidence axioms are independent

Now we will show that the three axioms of the very simple incidence geometry (which can be
defined in set theory as sets of points, lines, and ‘incidences’) are independent - that is, any one of
them cannot be proven from the others.

Incidence Axiom 1: For every point P and for every point Q not equal to P , there exists a
unique line l incident with P and Q.
Incidence Axiom 2: For every line l, there exist at least two distinct points incident with l.
Incidence Axiom 3: There exist three distinct points with the property that no line is incident
with all three of them. [Greenberg]

Proof. To prove the axioms are independent, we will create incidence geometries in which two
axioms hold but one does not.
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Figure 5: 2&3 but not 1.

This geometry satisfies axiom 2 & 3 but not 1: There are three points, A, B, and C, and one
line {A,B}. This axiom doesn’t satisfy axiom 1 because there are no lines between A and C or
B and C. Axiom 2 is satisfied since the one line {A,B} is incident with the two points A and B.
Axiom 3 is satisfied because of the three points, A and B are on the same line, but C is not.

Figure 6: 1&3 but not 2.

This geometry satisfies axiom 1 & 3 but not 2: There are three points, A, B, and C, and four
lines {A,B}, {A,C}, {B,C}, and {A}. Axiom 1 is satisfied because there is a line (all lines except
the last one listed) going through every pair of points. Axiom 2 is not satisfied because line {A}
only goes through one distinct point. Axiom 3 is satisfied because no one line goes through A, B,
and C.
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Figure 7: 1&2 but not 3.

This geometry satisfies axiom 1 & 2 but not 3: There are two points, A and B, and one line,
{A,B}. This satisfies axiom 1 because there is a line between the only two points. This satisfies
axiom 2 because the one line has two points incident with it. There are only two points, and axiom
3 requires there to exist at least 3 points, therefore axiom 3 is not met.

Therefore, since each axiom can be made false while the others remain true, the three incidence
axioms are independent.

5 Reflection on non-traditional mathematics

I once thought that traditional, Western mathematics was a universal bastion of truth, that these
mathematical ideas were so pure that they were discovered facets of the universe itself, called a
“transcendent Platonic mathematics” by Lakoff in Where Mathematics Comes From. I now realize
that math is completely a human invention.

The shaky ground is apparent when learning about geometry. There is a necessity of undefined
terms, and the starting axioms have to be taken for granted, and, worse, completely contradictory
axioms can make just as much “sense.”

The fifth postulate, for example, is not obvious. Non-Euclidean geometry isn’t unimaginably
alien. The curvature of space could make parallel lines intersect at infinity, as it does in some
geometries. Space could loop back on itself at the edge of the universe, making elliptical geometry
the actually correct type of geometry to apply to our universe, at least at that scale. This is similar
to the difference between Newtonian and Einsteinian physics; Newtonian works well for objects on
our scale, but when you look at the big picture, it falls apart. These all involve looking from the
human perspective in the universe, which we are fundamentally limited by.

Lakoff argues that the only math we can know is “mind based mathematics, limited and struc-
tured by human brains and minds.” Math is all metaphor, which is only done by brains.
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Math produces interesting results, that is all. So, why shouldn’t other forms of knowledge be
treated equally? As described in Betasamosake Simpson’s Land as pedagogy, the Native American
Nishnaabeg learned how to produce maple syrup by seeing squirrels in the trees. Shouldn’t learning
by observing nature, which has existed and thrived for billions of years before humans invented
math, also produce interesting results?

6 Portfolio reflection

I start out with Graphs give rise to metric spaces because I think the two topics, graphs and
metric spaces, are very interesting. Graphs are familiar from the computer science discipline, and
metric spaces seem like they enable for a lot of other parts of geometry in the familiar plane, by
defining distance. The idea of a metric is simple and abstract, and I thought it was interesting
how it tied distances on a graph to distances on a plane, two seemingly unrelated but important
concepts.

Using the concept of graphs, this leads naturally into Exploring the combinatorics of a
triangle tiling. This piece is probably my favorite in the portfolio and the class. It involves
finding a bunch of fun results about an interesting piece of geometry, as well as seeing how fast
the numbers grow in hyperbolic geometry. This leads to a discussion of the parallel postulate in
hyperbolic geometry.

All of the axioms but the parallel postulate are the same in Euclidean and hyperbolic ge-
ometry, under Hilbert’s and Klein’s models, respectively. The next proof, Verifying Hilbert’s
betweenness axiom 3 for Klein’s model, shows how one of the axioms transfers between the
geometries.

I debated putting Incidence axioms are independent at the start, since it is naturally
the simplest and the starting point of the course, but I wanted to start with something more
interesting. Also, this simple discussion of these somewhat rickety-feeling foundations leads into
the next section.

In Reflection on non-traditional mathematics, I discussed how, without the existence of
one right truth, all forms of human knowledge are equal, so we should learn more from each other
and from other cultures.

For my oral presentation portion, I have attached Modern advancements in navigation,
a discussion of technologies for navigation. From this, I determined a common thread of time, a
very human concept, as well as different geometric methods, being used for navigation.


